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Abstract

In this paper, we use the recently derived solution of two circular elastic inclusions under anti-plane shear
deformation (Honein et al., 1992a, b) to evaluate the material forces, as well as expanding and rotating moments
`acting' on inclusions. These may be de®ned as the energy changes (e.g. energy release rates) accompanying unit

translation, self-similar expansion and rotation of inclusions, respectively. The bond between the inclusions and the
matrix is assumed to be perfect and the calculation is performed using the concept of the J, M and L path-
independent integrals, respectively. The results obtained are valid under arbitrary loading.

An illustrative example shows that two circular holes under remote uniform shear stress attract each other and
that the J and M integrals grow without bound as the two holes become in®nitely close. A careful examination of
the expression for these integrals yields the result that the J and M integrals tend to in®nity proportionally to 1=

��
e
p

,

where e is a non-dimensional distance between the holes. It is also noticed that the J integral decays rapidly to zero
as the two holes become four or ®ve radii apart. Other examples of two circular holes and inclusions under various
stress ®elds are also considered and discussed. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the study of defect mechanics in solids, conservation laws, in the form of path-independent
integrals, play a fundamental role. These integrals can be related to total potential energy changes (e.g.
energy release rates) as a defect translates, rotates or expands self-similarly in solids.1 For example, the
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classical J integral (Rice, 1968), given by

J �
�
C

W dx2 ÿ tiui,1 dl, �1�

where, in two-dimensional space, C is a closed curve in the x1, x2 plane, W is the strain energy density,
ti �i � 1, 2� are the components of traction acting on the boundary of the region enclosed by C, ui are
the components of the displacement ®eld, and dl is the in®nitesimal arc length along the curve C (see
Fig. l), can be interpreted as the negative of the potential energy release rate as a traction-free cavity
undergoes a unit translation in the x1-direction (see Budiansky and Rice, 1973).

The J integral is actually the ®rst component of the vector

Jk �
�
C

ÿ
Wnk ÿ tiui,k

�
dl �

�
C

bk dl, �2�

where nk is the unit outward normal to C, lying in the same plane and dl can be written as dl � ÿn2 dx1

� n1 dx2: The J2 integral is interpreted as the negative of the total potential energy release rate as the
traction-free cavity undergoes a unit translation in the x2-direction.

Other path-independent integrals derived by GuÈ nther (1962) and Knowles and Sternberg (1972)
include the L and M integrals given in two dimensions by

L �
�
C

e3ij
ÿ
Wxjni � tiuj ÿ tkuk,ix j

�
dl �

�
C

e3ij
ÿ
bix j � tiuj

�
dl, �3�

and

M �
�
C

ÿ
Wxini ÿ tkuk,ix i

�
dl �

�
C

bkxk dl, �4�

where eijk is the alternating tensor. The L integral may be called the material rotating moment and can
be interpreted as the positive of the energy change as a traction-free cavity undergoes a unit rotation
with respect to the origin, while the M integral may be called the expanding moment (virial) and can be
interpreted as the negative of the energy change as a traction-free cavity undergoes a self-similar
expansion relative to the origin.

Fig. 1. A contour surrounding a defect illustrating path-independent integrals.
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In this paper, these path-independent integrals are calculated around a circular elastic inclusion
interacting with another one under anti-plane shear deformation (see Fig. 2) and interpreted in terms of
energy changes as the inclusion enclosed by the path of integration undergoes either a unit translation,
rotation or self-similar expansion. The inclusions considered are assumed to be perfectly bonded to a
matrix, of in®nite extent, subjected to arbitrary loading. The formulae obtained are universal, i.e.
independent of the loading or singularities, and the asymptotic behavior as two holes approach each
other is investigated.

2. Two circular inclusions in anti-plane elastostatics

Under anti-plane deformation, the displacement ®eld satis®es

u1 � u2 � 0, u � u3 � u3�x1, x2�, �5�
i.e., the only nonvanishing component of displacement, with respect to a Cartesian coordinate system
Ox1x2x3, is u � u3 which is a function of the coordinates x1 and x2 only.

As is well known, the displacement ®eld u can be given, in the case of anti-plane elastostatics, in terms
of an analytic complex function f of a complex variable z � x1 � ix2, namely

u � 1

m
I
�
f�z�	, �6�

where m is the shear modulus and I stands for the imaginary part of the argument. Then the stress ®eld,
in Cartesian coordinates, is related to f by

s23 � is13 � f 0, �7�
and, in polar coordinates, by

s3y � is3r � eiyf 0, �8�
where, throughout this paper, a prime indicates di�erentiation with respect to the complex variable z.
Thus, any analytical function f will lead to a stress ®eld while satisfying compatibility and equilibrium.

In the following, we recall brie¯y some results derived previously by the authors (Honein et al., 1992a,

Fig. 2. Two circular inclusions under arbitrary anti-plane deformation.
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b). Consider the system shown in Fig. 2, consisting of three domains D, D1 and D2, where D is of
in®nite extent and is occupied by a material (the matrix), of shear modulus m, which is subjected to
arbitrary loading (singularities).

The regions D1 and D2 are circular domains centered at z1 and z2, of radii a1 and a2 and occupied by
materials of shear moduli m1 and m2, respectively. No loading is applied inside D1 and D2:

We assume that the arbitrary singularities would produce the complex potential f if D occupied the
whole space. We seek the solution of the heterogeneous problem in the form:

in D: F � f�H1�f1� �H2�f2�, �9�

in D1: F1 � f� f1, �10�

in D2: F2 � f� f2, �11�
where f1 and f1 are analytic in D1, while f2 and f2 are analytic in D2:

Here Hi (i = 1, 2) designates the `hat' transformation with respect to the circle Ci � @Di bounding
Di, i.e., Hi is de®ned by

Hi�fi ��z� � fi�Aiz�, �12�
where the overbar indicates complex conjugation and Ai is the inversion with respect to Ci: We recall
that Ai is given by

Aiz � a2i
�zÿ �zi

� zi, �13�

The continuity of tractions across @D1 and @D2 leads to

f1 ÿ a1H2�f2� � a1f� constant, �14�
and

f2 ÿ a2H1�f1� � a2f� constant, �15�
where ai � �mi ÿ m� �mi � m�ÿ1 and constant refers to complex numbers.

The governing equations for f1 and f2 are obtained as:

f1�z� ÿ a1a2f1�Mz� � a1f� a1a2f�A1z� � constant, �16�
and

f2�z� ÿ a1a2f2�Nz� � a2f� a1a2f�A2z� � constant, �17�
where Mz � A1A2z and Nz � A2A1z �Mÿ1z:

By e�ecting the change of variables

w1 � T1z � zÿ g1
zÿ g2

, w2 � T2z � zÿ g2
zÿ g1

, �18�

where g1 and g2 are the ®xed points of the transformation M (Honein et al., 1992b), and

g1 � f1 � T ÿ11 , g2 � f2 � T ÿ12 , �19�
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we obtain

g1�w1� ÿ a1a2g1�k1k2w1� � a1f� a1a2f�A2z� � constant � R1�w1�, �20�
and

g2�w2� ÿ a1a2g2�k1k2w2� � a2f� a1a2f�A1z� � constant � R2�w2�, �21�
where ki � Ti�zi �, i � 1, 2 and the operation � composites is de®ned so that f � T�z� � f �T�z��:

3. Evaluation of the J integral

In terms of the complex potential F de®ned by eqn (6), the J1 and J2 integrals have been shown by
Budiansky and Rice (1973) to be given by

J1 ÿ iJ2 � ÿ i

2m

�
C

�F 0 �2 dz, �22�

where C is a closed contour surrounding the defect. Our purpose is to ®nd the material force2 acting on
a circular inclusion interacting with another one under arbitrary external loading (singularities). We
take, without loss of generality, the x1-axis along the line joining the centers of the two inclusions. We
would like to express the result in terms of the elastic ®eld which would exist in the homogeneous body
when the two elastic inclusions are absent. To this end, we use the solution derived in Honein et al.
(1992b).

We wish to evaluate the material force acting on the ®rst inclusion. Thus, we replace C by @D1 and
evaluate, using eqn (9), the integral�

@D1

�F 0 �2 dz �
�
@D1

hÿ
f 0 �H2�f2� 0

�2�ÿH1�f1 � 0
�2�2ÿf 0 �H2�f2� 0

�
H1�f1 � 0

i
dz: �23�

But f 0 �H2�f2� 0 is analytic inside D1, therefore, its contribution to the integral is zero by Cauchy's
theorem. Similarly we can show that the contribution of �H1�f1� 0)2 is zero by applying the residue
theorem. Thus the integral reduces to�

@D1

�F 0 �2 dz � 2

�
@D1

ÿ
f 0 �H2�f2� 0

�
H1�f1� 0 dz

� 2

a1

�
@D1

f 01H1�f1� 0 dz, �24�

where in the last substitution we have used eqn (14).
With the change of variable given by the ®rst of Eqs. (18), the integral can be written over the

transformed contour T1�@D1� as

2 Here, by material force is meant the change in the total potential energy of the system as the inclusion undergoes a unit trans-

lation.
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�
@D1

�F 0 �2 dz � 2

a1�g1 ÿ g2�

�
T1�@D1 �

d

dw1
g1�w1 � d

dw1
g1�k1= �w1��w1 ÿ 1�2 dw1: �25�

The function g1, which is analytic for jw1j < k1=21 , is the solution to the governing equation

g1�w1� ÿ a1a2g1�k1k2w1� � a1f � T ÿ11 �w1� � a1a2f � T ÿ11

�
1

k2 �w1

�
, �26�

which is deduced from (16) after dropping the constant.
The function f � Tÿ11 is known and has the expansion

f � T ÿ11 �w1� �

8>>>>><>>>>>:

X1
n�0

Anw
n
1, for jw1j < k1=21 ;

X1
n�0

Bnw
ÿn
1 , for jw1j > kÿ1=21

�27�

The solution of (26) can then be written as

g1�w1� �
X1
n�0

a1unwn
1, �28�

with un given by

un � An � a2 �Bnk
n
2

1ÿ a1a2�k1k2�n : �29�

On substituting eqn (28) into (25) we obtain�
@D1

�F 0 �2 dz � 2a1
�g2 ÿ g1�

�
T1�@D1 �

X1
n�1

nunw
nÿ1
1

X1
m�1

m �umk
m
1 w
ÿmÿ1
1 �w1 ÿ 1�2 dw1, �30�

which yields, after using the residue theorem�
@D1

�F 0 �2 dz � 4pa1i
g2 ÿ g1

X1
n�1

nunk
nÿ1
1

��n� 1� �un�1k21 ÿ 2n �unk1 � �nÿ 1� �unÿ1
�
: �31�

Finally the result for the J1 and J2 integrals is obtained as

J1 ÿ iJ2 � 2pa1
m�g2 ÿ g1�

X1
n�1

nunk
nÿ1
1

��n� 1� �un�1k21 ÿ 2n �unk1 � �nÿ 1� �unÿ1
� �32�

where we recall that un is given by eqn (29).
We note that for a1 � 0 (no inclusion inside D1� the J1 and J2 integrals vanish as they must in this

case. The series in eqn (32) is a geometric series with the leading term of the order of nkn1 and is rapidly
convergent since jk1j < 1:

eqn (32) is a universal expression giving the material force acting on a circular inclusion interacting
with another one in terms of the elastic ®eld that would exist if the two inclusions were absent and the
entire plane was occupied by the matrix material (the corresponding homogeneous problem).

In the following, some special cases of loading will be worked out for illustrative purposes.
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Furthermore, the asymptotic behavior of the material force as the two holes approach each other under
remote uniform shear stress will be indicated.

3.1. Examples

3.1.1. Two circular inclusions under uniform shear
In this case the complex potential for the homogeneous problem is given by f � tz where t is a real

constant, and the stress ®eld is given by s23 � t � f 0: We readily obtain the expansion

f � Tÿ11 �w1� �

8>>>>><>>>>>:
t�g1 ÿ g2w1�

X1
n�0

wn
1, for jw1j < 1;

t
ÿ
g2 ÿ g1w

ÿn
1

�X1
n�0

wÿn1 , for jw1j > 1:

�33�

From which we deduce by inspection that

An � t�g1 ÿ g2� � ÿBn for ne1; �34�
and thus,

un �
t�g1 ÿ g2�

ÿ
1ÿ a2kn2

�
1ÿ a1a2kn1k

n
2

: �35�

The formula (32) for the J1 and J2 integrals becomes

j1 ÿ iJ2 �
2pa1�g2 ÿ g1�t2

m

X1
n�1

n
ÿ
1ÿ a2kn2

�
1ÿ a1a2kn1k

n
2

knÿ11

"
�n� 1�ÿ1ÿ a2kn�12

�
1ÿ a1a2kn�11 kn�12

k21

ÿ 2n

ÿ
1ÿ a2kn2

�
1ÿ a1a2kn1k

n
2

k1 � �nÿ 1�
ÿ
1ÿ a2knÿ12

�
1ÿ a1a2knÿ11 knÿ12

#
:

�36�

It can be veri®ed that, when a2 � 0, i.e. when the second inclusion is absent, eqn (36) yields the
expected result J1 ÿ iJ2 � 0:

Fig. 3. Two circular holes centered on the x 1-axis. The second hole is centered at the origin.
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The right-hand side of eqn (36) is real and therefore the J2-integral is zero, as would be expected on
physical grounds.

In Fig. 3, we present two circular cavities of radii a1 and a2 and centered at the x1-axis at z1 and z2
(the origin), respectively. The two holes are separated by a distance d. The graph for the non-
dimensional J1-integral, J

�
1 � mJ1=�2pa1t2�, is sketched in Fig. 4 as a function of the non-dimensional

distance of separation d � � d=a1 of the two holes of Fig. 3.
It is seen that J1 grows without bound as d � tends to zero.
By performing an asymptotic study of the series as d �4 0 we can readily show that
jJ1j0�pt2=m

��
e
p �aH as d �40 where e � d=aH � a1d

�=aH, aH being the harmonic average of the radii a1
and a2, given by aH � 2a1a2=�a1 � a2�:

In Fig. 5, the case of two circular inclusions having m1 � 0:1m and m2 � 10m under uniform shear is
considered. For this case, we sketch in Fig. 6 the non-dimensional J-integral as a function of d �, the
non-dimensional distance between the two inclusions, for di�erent values of a2=a1: In this case, the
material force between the inclusions is repulsive and it tends to zero as the inclusions become far apart.
It is worthwhile noting that because of the shielding e�ect, the repulsive material force is not maximum

Fig. 4. Graph of J�1, the non-dimensional J1 integral, as a function of the non-dimensional distance of separation d � � d=a1 of the

two holes of Fig. 3 under remote uniform shear.

Fig. 5. Two circular inclusions centered on the x 1-axis. The second inclusion is centered at the origin.
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when the inclusions touch each other. This maximum occurs when the inclusions are close to each other
�d=a1 < 0:5a2=a1).

3.1.2. Two circular inclusions under linearly distributed shear
In this case, the complex potential for the homogeneous problem is given by f � tz2 where t is a

complex constant and the stress ®eld is given by s23 � is13 � 2tz: eqn (33) should be replaced by

f � Tÿ11 �w1� �

8>>>>><>>>>>:
t�g1 ÿ g2w1�2

X1
n�0
�n� 1�wn

1, for jw1j < 1;

t
ÿ
g2 ÿ g1w

ÿ1
1

�2X1
n�1
�nÿ 1�wÿn1 , for jw1j < 1:

�37�

From which we deduce that

A1 � 2tg1�g1 ÿ g2 � �38�

An � t
��n� 1�g21 ÿ 2ng1g2 � �nÿ 1�g22

�
, for ne2: �39�

The coe�cients Bi are obtained from Ai by interchanging the subscripts 1 and 2.
We can also verify that the following relations hold:

An�1 ÿ An � Bn�1 ÿ Bn � t�g1 ÿ g2�2: �40�
In Fig. 7, we sketch the graph of J�1 as a function of the non-dimensional separation d � of two holes

as depicted in Fig. 3 with a2 � 2a1: It is seen that the J1-integral vanishes at a certain distance denoted
by dc and that Hole 1 of radius a1 is attracted to the second hole which is centered at the origin if
d � < dc, and it is repulsed if d � > dc: Furthermore, for large values of d �, J�1 increases linearly with the
non-dimensional distance of separation d � asymptotically to the solution of a single hole as given by
eqn (41) below.

Under the present loading, the J2 component acting on Hole 1 vanishes along the x1-axis.
Therefore, for d � dc the material force acting on Hole 1 has vanishing components in both
directions. Hence, this position is an equilibrium position, however, this equilibrium is unstable

Fig. 6. Graph of J�1, the non-dimensional J1 integral, as a function of the distance of separation d � � d=a1 of the two inclusions of

Fig. 5 under uniform shear.
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because any small deviation from this position will generate a material force which will pull the

hole further away form it.

In order to represent graphically how the material force changes as the location of Hole 1 varies, we

®x the center of Hole 2 at the origin with a2 � 2a1: At each point z, we can compute the material force

when Hole 1 is centered at z. This will be represented by a bound vector with tail at z. These non-

dimensional arrows are sketched in Fig. 8 and give a visualization of the in¯uence of Hole 2 in its

neighborhood on Hole 1. It can be seen from the ®gure that the two holes attract each other when they

are su�ciently close or when Hole 1 is close to the x2-axis.

In order to quantify the e�ect of the presence of Hole 2 on the material force, we compute

analytically the components of the J-integral acting on Hole 1 when Hole 2 is absent. In this case, since

the elastic ®eld is not uniform, the material force does not vanish and is given by

Fig. 7. Graph of J�1, the non-dimensional J1 integral, as a function of the distance of separation d � � d=a1 of the two holes of Fig.

3, with a2 � 2a1, and under remote linearly distributed shear. For d � > dc, the material force between the holes is repulsive, and it

is attractive for d � < dc: The straight line represents the material force on a single hole as given by eqn (41).

Fig. 8. The visual representation of the material force between two holes. Hole 2 is shown and is centered at the origin. Each

bound vector (arrow) represents the non-dimensional material force acting on Hole 1 (not shown) when it is centered at the tail of

the arrow. The two holes are under remote linearly distributed shear ®eld.
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J1 ÿ iJ2 � 2p
m

ÿÿ a1aa21 �z1jtj2
� �41�

where z1 is the center of the inclusion and a1 is its radius. These are represented in Fig. 9 by bound
vectors emanating at the center z1 of Hole 1. By comparing Figs. 8 and 9, it can be seen that the e�ect
of Hole 2 when placed at the origin is strong, but is local and decays rapidly as one moves away from
the origin.

4. Evaluation of L and M integrals

The evaluation of the L and M integrals proceeds along similar lines. We note in this regard that the
formula given by Budiansky and Rice (1973) for L and M integrals contains a misprint and must read

Lÿ iM � ÿ 1

2m

�
@D1

�zÿ z1��F 0 �2 dz, �42�

with the minus sign multiplying the imaginary unit instead of the plus sign given in their formula. The
center of @D1, z1, is the point with respect to which L and M are evaluated. Then for traction-free holes
L can be interpreted as the positive of the total potential energy released as the defect undergoes a unit
rotation with respect to the center z1, while M is the negative of the total potential energy released as
the defect undergoes a self-similar expansion. The L integral given by (42) vanishes, due to symmetry, as
expected. We show shortly, as a check of our result, that this is indeed the case.

On substituting (9) in (42), we can show by applying the residue theorem that the contribution of
�zÿ z1� �f 0 �H2�f2� 0 �2 and �zÿ z1� �H1�f1� 0 �2 to the integral vanishes and we are left with�

@D1

�zÿ z1��F 0 �2 dz � 2

a1

�
@D1

�zÿ z1�f 01H1�f1 � 0 dz: �43�

In terms of the variable w1 de®ned by (18), the integral becomes

Fig. 9. The absence of Hole 2 in¯uences the material forces acting on Hole 1. A comparison with Fig. 8 shows that the in¯uence is

local and decays rapidly.
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�
@D1

�zÿ z1��F 0 �2 dz � 2

a1�g1 ÿ g2�

�
T1�@D1 �

�w1 ÿ k1��w1 ÿ 1� d

dw1
g1�w1� d

dw1
g1�k1= �w1� dw1: �44�

On replacing g1 by its value given by eqn (28) and using the residue theorem we obtain�
@D1

�zÿ z1��F 0 �2 dz � 2pa1i
1ÿ k1

X1
n�1

nkn1
�
2�n� 1�k1R�un �un�1� ÿ n�1� k1�junj2

�
: �45�

Hence we obtain by (42) L � 0 as expected, and

M � 2pa1
m�1ÿ k1�

X1
n�1

nkn1
�
n�1� k1�junj2 ÿ 2�n� 1�k1R�un �un�1�

�
: �46�

This last expression represents a universal formula giving the M integral in terms of the elastic ®eld of
the corresponding homogeneous problem.

Fig. 10. Graph of M�, the non-dimensional M integral, as a function of the distance of separation d � � d=a1 of the two holes of

Fig. 3 under remote uniform shear.

Fig. 11. Graph of M�, the non-dimensional M integral, as a function of the distance of separation d � � d=a1 of the two holes of

Fig. 3, with a2 � 2a1, and under remote linearly distributed shear.
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The non-dimensional M integral, M� � �mM=2pt2�, is plotted in Fig. 10 as a function of the non-
dimensional distance of separation d � of two holes of di�erent radii, subjected to uniform remote
longitudinal shear t: We see that M, like J1, grows without bound as d � tends to zero. We can show
that the asymptotic behavior of M, as d �4 0, is given by

M0 pt2

m
��
e
p aHa10a1J1: �47�

For the case of linearly distributed loading and the same con®guration as in example 3.1.2, M� is
drawn in Fig. 11 as a function of d �: We see that as the two cavities approach each other, the
expanding moment M� becomes very large due to the interaction of the cavities. Also, as Hole 1 moves
on the x1-axis away from the origin, M� increases inde®nitely due to the external linearly distributed
loading. At a distance d � � dc, M� possesses a minimum, i.e. the expanding moment acting on the
cavity is minimum at this location.

5. Conclusions

In this paper, we considered an extended elastic medium containing two perfectly bonded circular
inclusions and subjected to arbitrary singularities (physical forces and/or moments) inducing an anti-
plane strain ®eld. We evaluated the material forces and moments (i.e. energy change rates due to
translation, rotation and self-similar expansion) `acting' on one inclusion by deriving explicit expressions
for the J1, J2, L and M integrals. Two speci®c cases of uniform and linearly varying remote shear stress
®elds were considered as particular illustrative examples. In the latter case, when the inclusions become
cavities, the material force may be attractive or repulsive depending on the distance of separation. In the
former case, the material force tends to in®nity as 1=

��
e
p

when the two cavities approach each other,
where e is the non-dimensional distance separating the cavities.
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